
Design Overview on apalogretrieve

Oliver Bandel

31. Januar 2008

1

1 The used compilation units

Compressed

Datetime

Lexcombinedlog

Logentry

Main

Readcombinedlog

Querytypes

Querylex

Querygrammar

Urlencoding

logentry.ml typedefinitions of the Log-Entry-Records

logentry.mli Interface definition for logentry.ml

lexcombinedlog.mll Lexer definition for Logfiles

main.ml Main part of apalogretrieve

querytypes.ml definition of the result-types of the query-parser

readcombinedlog.ml the reader-functions for the Apache Combined Logfile

querygrammar.mly the granmmar definition for the SQL-parsing

querylex.mll the scanner for the SQL-parsing

1.1 Main

Main contains the REPL-loop for the SQL-like queries. For each complete query the
Logfile will be read.

There is no caching of the already read information. For small logfiles this is ok. For

2

big logfiles a caching-mechanism might be implemented, if necessary (if many queries
will be done).

1.2 Loglex

Loglex is a simple scanner that only grabs the next information in a logfile out and gives
it back as a string. Loglex does not check the syntax on a higher level. It only separates
text from [and] or " and ".

hostname.com - - [Date-and-Time] "GET /robots.txt HTTP/1.1" 404 216 "-" "Browsername"

hostname2.au - - [Date-and-Time] "GET /software/ HTTP/1.1" 200 1685 "-" "Another Browsername"

1.3 Logentry

Logentry contains functions to create Entry-records as well as functions to retrieve items
from the record as well as a function that extracts all items of a query from a record.
Logentry is handling the logentries in the most abstract way: it is a helper for other

modules in the project and determines, which values the different logfile-scanners has to
provide.

1.4 Readcombinedlog

Readcombinedlog reads a logfile that is in the
”
Apache Combined Logfile Format“. It

is a kind of high-level parsing, which uses Loglex for the logfile-scanning.
On page 3 you can see an (schematic) example of a logfile in the Apache Combined

Logfile Format. It has the following structure:

1. Hostname

2. ??? m1

3. ??? m2

4. Date, Time and possibly Timeshift for timezone (e.g. +0100)

5. HTTP-Request

6. Returncode for the Request (Status)

7. Size of the requested document

8. Referrer (last visited page before using the link to the requested page)

9. Client-Name (e.g. Browser-name)

1.5 Querytypes

Querytypes contains type-definitions that are necessary for the handling of queries.

3

1.6 Querylex

Querylex is the scanner for the terminal symbols that are used in the SQL-like state-
ments (read in the REPL-loop), which the user types in (or pipes in).

1.7 Querygrammar

Querygrammar is the implementation of the grammar of the SQL-like statements.
Here the query-syntax is implemented.
Querygrammar takes the tokens from Querylex and puts together a datastructure that

contains the information, that are used by the query-function in the module Main.
The filters for the WHERE-clauses are composed of partial applicated functions (clos-

ures). For complex queries, the already created closures will be composed together again.

1.7.1 Short overview on constructing result values of type query t

Here you can see the type of the resultvalue of the query-parser.

type query_t = { sel: Logentry.entry_type_t list;

file: string;

cond: (Logentry.entry_t -> bool) option }

As you can see, there is a list of selections, the filename and a condition-value with
type (Logentry.entry_t -> bool) option.

The optional condition value is not a list. Even if you have a lot of selection-criteria
(WHERE-clauses) there only is one value that will optional (only if there is at least one
condition) be used as a filter.

How is this filter being created?

This arrow starts to be a part of a graphic that explains the filter-creation (partial

application). This arrow shows me, that tikz works fine ;-))

4

